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Introduction 
 This paper is part of a contribution prepared for the ILRS signal processing working 
group. Its purpose is the compilation of a homogenous set of Center of Mass corrections 
(CoM)  for all existing spherical SLR satellites. Whereas the errors of the model assumptions 
are not well known, it seemed to be useful to provide a set of CoM values derived by identical 
procedures. 
 The CoM values given here are applicable for single photoelectron detecting systems 
working at very low return rate. The model of continuously distributed cube corners [1] has 
been adopted as described in the next chapter. Main difference to earlier work [12] is a 
revision of the reflectivity function. 
 
Description of the Method 
 The standard procedure of SLR data preprocessing is the formation of mean values of 
the residuals in some time window. Details are described in the normal point generation 
procedure adopted at the Herstmonceux workshop. To refer the normal point ranges to the 
center of mass of the satellite, we are needing a model of the expected distribution of range 
residuals. This can be obtained quite straightforward for the case of a single photoelectron 
system working at low return rate. The effect of nonzero return rate can be modelled 
separately. 
Because the orientation of the passive spherical satellites are unknown, averages over all 
orientations are computed. This can be done by computing the incoherent superposition of the 
signals of individual cube corners for a large set of orientations of the satellite and taking then 
the numerical average [6],[10]. The justification of using incoherent superposition lies in the 
fact, that for a sufficiently large data set the effect of coherent interference is averaging out.  
We are simplifying the averaging process by regarding first an individual cube corner at a 
given angle of incidence and averaging its relative return signal over all azimuth angles 
(rotating the cube corner around its axis of symmetry). This way we obtain a ‘reflectivity 
function η(φ) ‘ depending from the angle of incidence only. 
In the next stage the cube corners are regarded as homogeneously distributed over the 
spherical surface. This leads to a simple analytical expression for the expected residual 
distribution in terms of the function η(φ). Note that this does not necessarily imply that the 
cube corners are really uniformly distributed over the sphere. Even a single reflector mounted 
on the surface would produce the same distribution as long as all orientations of the satellite 
have the same probability.  
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Before discussing how to get reasonable estimates of  η(φ) for the different cube corner types, 
let us reproduce here the array transfer function: 
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Eq.1a and Eq.1b shall be considered together as a parameter representation where: 
 

F(x): probability density for the range residual to be inside x, x+dx (for infinitesimal 
 short laser pulses) 

 x : distance from the satellite’s center 
 φ : angle of incidence 
 R : radius of the satellite (distance from the center to the cube corner’s front face) 
 L : vertex length of the cube corners 
 N: normalising factor 
 
To compute F(x) in dependence from x, the inversion of Eq.1b may be useful: 
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The factor N has been introduced to ensure proper normalisation of F(x): 
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The earliest reflection point x1 corresponds to φ=0 and the most far reflection x2 

corresponds to the cut off angle φc . At the earliest reflection point the value of  F(x) is: 
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F(x) is monotonously decreasing from this value with increasing distance as can be 

seen from a typical example in Fig.1.  
If the SLR system response (obtained from the distribution of calibration residuals) is 

symmetrical, for instance nearly Gaussian, the center of mass correction is simply the first  



moment of F(x): 
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In general we first have to convolute the array transfer function F(x) with the system 

response of the SLR system , apply iterative data editing, and use the resulting modified 
distribution to compute the first moment. 

In this study we model the system response by a gaussian of different width and then 
apply iterative 2.5 data editing. 

We have now to come back to the estimate of the reflectivity function η(φ). The total 
intensity reflected back from a cube corner is first proportional to the (orientation dependent) 
active area multiplied by the transmission factors of all optical surfaces involved. From this 
light a small fraction is received by the SLR telescope depending on the location of the station 
in the far field diffraction pattern on ground. The effect of diffraction we are taking into 
account in this study by a weighting factor proportional to the active area [1],[6],[10]. The 
result is the following reflectivity function: 
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A(φ,α) :  active area of an individual reflector including the effect of masking 
    and recession 
ρ(φ,α):   total optical transmission coefficient 
φ,α :       angle of incidence and azimuth resp. 
 
Equations to compute the functions A(φ,α) for cube corners with triangular, hexagonal 

and circular front faces can be found in [2]. Useful relations to find the conditions of partial 
loss of total internal reflection, which are necessary to find the function ρ(φ,α) are compiled 
in [2] as well. 

For the biggest spherical satellite, AJISAI, the resulting transfer function is plotted in 
Fig.1. The asymmetric shape is very pronounced even after convolution with a gaussian of 
11.5 mm rms width. The shape of the AJISAI cube corners is somewhat unusual (hexagons 
with unequal sides, [10]) and there are no simple equations for the computations of the active 
area available. Therefore we used a table of A(φ,α) kindly submitted by Otsubo. 
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Fig.1: The Transfer Function of the AJISAI Satellite 
 

 
Results 

The described method has been used to tabulate the transfer functions of all spherical 
satellites with 0.25 mm spacing. This tables are then used for discrete convolution with 
gaussians of different width. In the last step iterative data editing has been applied using 3σ 
or 2.5σ as a criterion. In the following table the first column contains the CoM values without 
any editing (first moments of F(x)). In the following 3 columns the effect of  
2.5σ− clipping  is shown for gaussian systems with 5,10 and 15mm rms width respectively. 
In the last column some reference values are given , which seem to be generally adopted. 
Note that all data are for 532 nm wavelength. 
 
Satellite No clipping  2.5 σ – clipping, 10 Iterations Standard  [11] Further Ref. 
   5mm 10mm 15mm   
AJISAI   974.2   991.6  990.7  989.5  1010   971.1  [10] 

ETALON   569.6   580.9  579.9  578.7    558   576     [6] 
LAGEOS   245.8   248.6        247.6  247.0    251    [5]   243     [4],[12} 
STARLETTE    77.7     78.6   78.1   77.9     75     [3]      
GFZ-1     60.1     60.1   60.1   60.1     58.5  [8],[9]  
WESTPAC     62.4     62.4   62.4   62.4     61.8  [7]  
 
As can be seen, our CoM values are not far from the standard values except for AJISAI and 
ETALON. But our results for AJISAI and ETALON are in good agreement with more recent 



estimates [10],[6]. The small difference to Otsubo’s value is due to the fact that he is using a 
slightly different weighting function (  (active area)²cos(φ) instead of  (active area)²cos²(φ), 
where the active area is measured on the prism front face ).When using identical weighting 
functions we obtained perfect agreement with Otsubo’s result.  
The effect of data editing obviously is significant for LAGEOS and bigger satellites only. For 
the smaller satellites including STARLETTE/STELLA data editing has negligible effect on 
the mean because we assumed a gaussian system response. This might be different when 
using the realistic asymmetric system response which is typical for SPAD detectors. 
The most critical point in this analysis is the choice of the weighting function η(φ) 
determining the shape of the distribution F(x). Comparison with the residual distributions of 
Herstmonceux data from LAGEOS and AJISAI seem to indicate that this model produces 
slightly too narrow distributions [13]. That means the CoM values given here may be slightly 
too high. In the case of LAGEOS earlier work estimating η(φ) from data tabulated in Ref.[4] 
resulted in a 3mm lower CoM value.  Further comparisons with measurements using data 
from different stations are indicated. 
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